Source code for watertap.unit_models.uv_aop

###############################################################################
# WaterTAP Copyright (c) 2021, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National
# Laboratory, National Renewable Energy Laboratory, and National Energy
# Technology Laboratory (subject to receipt of any required approvals from
# the U.S. Dept. of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#
###############################################################################

# Import Pyomo libraries
from pyomo.environ import (
    Block,
    Set,
    Var,
    Param,
    Suffix,
    NonNegativeReals,
    Reference,
    units as pyunits,
)
from pyomo.environ import *
from pyomo.common.config import ConfigBlock, ConfigValue, In

# Import IDAES cores
from idaes.core import (
    ControlVolume0DBlock,
    declare_process_block_class,
    MaterialBalanceType,
    EnergyBalanceType,
    MomentumBalanceType,
    UnitModelBlockData,
    useDefault,
)
from idaes.core.util import get_solver
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.exceptions import ConfigurationError
import idaes.core.util.scaling as iscale
import idaes.logger as idaeslog
from idaes.core.util.math import smooth_min, smooth_max

_log = idaeslog.getLogger(__name__)


[docs]@declare_process_block_class("Ultraviolet0D") class Ultraviolet0DData(UnitModelBlockData): """ Standard UV Unit Model Class: - zero dimensional model - steady state only - single liquid phase only """ CONFIG = ConfigBlock() CONFIG.declare( "dynamic", ConfigValue( domain=In([False]), default=False, description="Dynamic model flag - must be False", doc="""Indicates whether this model will be dynamic or not, **default** = False. UV units do not support dynamic behavior.""", ), ) CONFIG.declare( "has_holdup", ConfigValue( default=False, domain=In([False]), description="Holdup construction flag - must be False", doc="""Indicates whether holdup terms should be constructed or not. **default** - False. UV units do not have defined volume, thus this must be False.""", ), ) CONFIG.declare( "material_balance_type", ConfigValue( default=MaterialBalanceType.useDefault, domain=In(MaterialBalanceType), description="Material balance construction flag", doc="""Indicates what type of mass balance should be constructed, **default** - MaterialBalanceType.useDefault. **Valid values:** { **MaterialBalanceType.useDefault - refer to property package for default balance type **MaterialBalanceType.none** - exclude material balances, **MaterialBalanceType.componentPhase** - use phase component balances, **MaterialBalanceType.componentTotal** - use total component balances, **MaterialBalanceType.elementTotal** - use total element balances, **MaterialBalanceType.total** - use total material balance.}""", ), ) CONFIG.declare( "energy_balance_type", ConfigValue( default=EnergyBalanceType.useDefault, domain=In(EnergyBalanceType), description="Energy balance construction flag", doc="""Indicates what type of energy balance should be constructed, **default** - EnergyBalanceType.useDefault. **Valid values:** { **EnergyBalanceType.useDefault - refer to property package for default balance type **EnergyBalanceType.none** - exclude energy balances, **EnergyBalanceType.enthalpyTotal** - single enthalpy balance for material, **EnergyBalanceType.enthalpyPhase** - enthalpy balances for each phase, **EnergyBalanceType.energyTotal** - single energy balance for material, **EnergyBalanceType.energyPhase** - energy balances for each phase.}""", ), ) CONFIG.declare( "momentum_balance_type", ConfigValue( default=MomentumBalanceType.pressureTotal, domain=In(MomentumBalanceType), description="Momentum balance construction flag", doc="""Indicates what type of momentum balance should be constructed, **default** - MomentumBalanceType.pressureTotal. **Valid values:** { **MomentumBalanceType.none** - exclude momentum balances, **MomentumBalanceType.pressureTotal** - single pressure balance for material, **MomentumBalanceType.pressurePhase** - pressure balances for each phase, **MomentumBalanceType.momentumTotal** - single momentum balance for material, **MomentumBalanceType.momentumPhase** - momentum balances for each phase.}""", ), ) CONFIG.declare( "has_pressure_change", ConfigValue( default=False, domain=In([True, False]), description="Pressure change term construction flag", doc="""Indicates whether terms for pressure change should be constructed, **default** - False. **Valid values:** { **True** - include pressure change terms, **False** - exclude pressure change terms.}""", ), ) CONFIG.declare( "property_package", ConfigValue( default=useDefault, domain=is_physical_parameter_block, description="Property package to use for control volume", doc="""Property parameter object used to define property calculations, **default** - useDefault. **Valid values:** { **useDefault** - use default package from parent model or flowsheet, **PhysicalParameterObject** - a PhysicalParameterBlock object.}""", ), ) CONFIG.declare( "property_package_args", ConfigBlock( implicit=True, description="Arguments to use for constructing property packages", doc="""A ConfigBlock with arguments to be passed to a property block(s) and used when constructing these, **default** - None. **Valid values:** { see property package for documentation.}""", ), )
[docs] def build(self): # Call UnitModel.build to setup dynamics super().build() self.scaling_factor = Suffix(direction=Suffix.EXPORT) if list(self.config.property_package.phase_list) != ["Liq"]: raise ConfigurationError( "UV model only supports one liquid phase ['Liq']," "the property package has specified the following phases {}".format( [p for p in self.config.property_package.phase_list] ) ) units_meta = self.config.property_package.get_metadata().get_derived_units # TODO: update IDAES such that solvent and solute lists are automatically created on the parameter block self.solvent_list = Set() self.solute_list = Set() for c in self.config.property_package.component_list: comp = self.config.property_package.get_component(c) try: if comp.is_solvent(): self.solvent_list.add(c) if comp.is_solute(): self.solute_list.add(c) except TypeError: raise ConfigurationError( "UV model only supports one solvent and one or more solutes," "the provided property package has specified a component '{}' " "that is not a solvent or solute".format(c) ) if len(self.solvent_list) > 1: raise ConfigurationError( "UV model only supports one solvent component," "the provided property package has specified {} solvent components".format( len(self.solvent_list) ) ) # Add unit parameters self.inactivation_rate = Var( self.config.property_package.phase_list, self.config.property_package.solute_set, initialize=2.5e-4, bounds=(1e-18, 100), domain=NonNegativeReals, units=units_meta("time") ** 2 * units_meta("mass") ** -1, doc="Inactivation rate coefficient with respect to uv dose.", ) self.rate_constant = Var( self.config.property_package.phase_list, self.config.property_package.solute_set, initialize=2.5e-3, bounds=(1e-18, 100), domain=NonNegativeReals, units=units_meta("time") ** -1, doc="Overall pseudo-first order rate constant.", ) self.photolysis_rate_constant = Var( self.config.property_package.phase_list, self.config.property_package.solute_set, initialize=2e-3, bounds=(1e-18, 100), domain=NonNegativeReals, units=units_meta("time") ** -1, doc="Pseudo-first order rate constant for direct photolysis of component.", ) self.reaction_rate_constant = Var( self.config.property_package.phase_list, self.config.property_package.solute_set, initialize=5e-4, bounds=(1e-18, 100), domain=NonNegativeReals, units=units_meta("time") ** -1, doc="Pseudo-first order rate constant for indirect photolysis of component.", ) self.dens_solvent = Param( initialize=1000, units=units_meta("mass") * units_meta("length") ** -3, doc="Pure water density", ) # Add uv variables self.uv_dose = Var( initialize=5000, bounds=(1e-18, 10000), domain=NonNegativeReals, units=units_meta("mass") * units_meta("time") ** -2, doc="UV dose.", ) self.uv_intensity = Var( initialize=10, bounds=(1e-18, 10000), domain=NonNegativeReals, units=units_meta("mass") * units_meta("time") ** -3, doc="Average intensity of UV light.", ) self.exposure_time = Var( initialize=500, bounds=(1e-18, 10000), domain=NonNegativeReals, units=units_meta("time"), doc="Exposure time of UV light.", ) self.UVT = Var( initialize=0.9, bounds=(0, 1), domain=NonNegativeReals, units=pyunits.dimensionless, doc="UV transmittance.", ) self.UVA = Var( initialize=0.045, bounds=(0, 10), domain=NonNegativeReals, units=pyunits.cm**-1, doc="UV absorbance.", ) # Add electricity parameters self.electricity_demand_phase_comp = Var( self.flowsheet().config.time, self.config.property_package.phase_list, self.config.property_package.solute_set, initialize=1, bounds=(0, None), units=units_meta("mass") * units_meta("length") ** 2 * units_meta("time") ** -3, doc="Electricity demand per component", ) # self.electricity_demand_minimum = Var( # self.flowsheet().config.time, # initialize=1, # bounds=(0, None), # units=units_meta("mass") # * units_meta("length") ** 2 # * units_meta("time") ** -3, # doc="Minimum electricity demand of unit", # ) self.electrical_efficiency_phase_comp = Var( self.flowsheet().time, self.config.property_package.phase_list, self.config.property_package.solute_set, initialize=1, bounds=(0, None), units=units_meta("mass") * units_meta("length") ** -1 * units_meta("time") ** -2, doc="Electricity efficiency per log order reduction (EE/O)", ) self.lamp_efficiency = Var( initialize=0.3, bounds=(0, 1), domain=NonNegativeReals, units=pyunits.dimensionless, doc="Lamp efficiency", ) # Build control volume for UV unit self.control_volume = ControlVolume0DBlock( default={ "dynamic": False, "has_holdup": False, "property_package": self.config.property_package, "property_package_args": self.config.property_package_args, } ) self.control_volume.add_state_blocks(has_phase_equilibrium=False) self.control_volume.add_material_balances( balance_type=self.config.material_balance_type, has_mass_transfer=True ) self.control_volume.add_energy_balances( balance_type=self.config.energy_balance_type, has_enthalpy_transfer=True ) self.control_volume.add_momentum_balances( balance_type=self.config.momentum_balance_type, has_pressure_change=self.config.has_pressure_change, ) # Add Ports self.add_inlet_port(name="inlet", block=self.control_volume) self.add_outlet_port(name="outlet", block=self.control_volume) # References for control volume # pressure change if ( self.config.has_pressure_change is True and self.config.momentum_balance_type != "none" ): self.deltaP = Reference(self.control_volume.deltaP) # UV dose @self.Constraint( doc="Constraint for UV dose", ) def eq_uv_dose(b): return b.uv_dose == b.uv_intensity * b.exposure_time @self.Constraint( doc="Constraint for UV absorbance", ) def eq_UVA(b): return b.UVA == -log10(b.UVT) / (1 * pyunits.cm) # rate constant @self.Constraint( self.config.property_package.phase_list, self.config.property_package.solute_set, doc="Constraint for pseudo-first order rate constant with respect to uv intensity", ) def eq_rate_constant(b, p, j): return b.rate_constant[p, j] == b.uv_intensity * b.inactivation_rate[p, j] @self.Constraint( self.config.property_package.phase_list, self.config.property_package.solute_set, doc="Constraint for pseudo-first order rate constant with respect to direct and indirect photolysis", ) def eq_overall_rate_constant(b, p, j): return ( b.rate_constant[p, j] == b.photolysis_rate_constant[p, j] + b.reaction_rate_constant[p, j] ) # mass transfer @self.Constraint( self.flowsheet().config.time, self.config.property_package.phase_list, self.config.property_package.component_list, doc="Constraints for solvent and solute concentration in outlet stream.", ) def eq_outlet_conc(b, t, p, j): prop_in = b.control_volume.properties_in[t] prop_out = b.control_volume.properties_out[t] comp = self.config.property_package.get_component(j) if comp.is_solvent(): return prop_out.get_material_flow_terms( p, j ) == prop_in.get_material_flow_terms(p, j) elif comp.is_solute(): return prop_out.get_material_flow_terms( p, j ) == prop_in.get_material_flow_terms(p, j) * exp( pyunits.convert( -b.uv_dose * b.inactivation_rate[p, j], to_units=pyunits.dimensionless, ) ) # electricity @self.Constraint( self.flowsheet().config.time, self.config.property_package.phase_list, self.config.property_package.solute_set, doc="Constraints for electricity demand of the UV reactor.", ) def eq_electricity_demand_phase_comp(b, t, p, j): prop_in = b.control_volume.properties_in[t] return b.electricity_demand_phase_comp[t, p, j] == ( b.electrical_efficiency_phase_comp[t, p, j] * prop_in.flow_vol * log10( 1 / exp( pyunits.convert( -b.uv_dose * b.inactivation_rate[p, j], to_units=pyunits.dimensionless, ) ) ) / b.lamp_efficiency )
# TODO: add minimum electricity demand for multiple solutes # @self.Constraint( # self.flowsheet().config.time, # doc="Constraints for minimum electricity demand of the UV reactor.", # ) # def eq_minimum_electricity_demand(b, t): # return b.electricity_demand_minimum[t] == smooth_max(b.electricity_demand_phase_comp[t, p, j])
[docs] def initialize_build( blk, state_args=None, outlvl=idaeslog.NOTSET, solver=None, optarg=None ): """ General wrapper for pressure changer initialization routines Keyword Arguments: state_args : a dict of arguments to be passed to the property package(s) to provide an initial state for initialization (see documentation of the specific property package) (default = {}). outlvl : sets output level of initialization routine optarg : solver options dictionary object (default=None) solver : str indicating which solver to use during initialization (default = None) Returns: None """ init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit") solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit") # Set solver options opt = get_solver(solver, optarg) # --------------------------------------------------------------------- # Initialize holdup block flags = blk.control_volume.initialize( outlvl=outlvl, optarg=optarg, solver=solver, state_args=state_args, ) init_log.info_high("Initialization Step 1 Complete.") # --------------------------------------------------------------------- # Initialize permeate # Set state_args from inlet state if state_args is None: state_args = {} state_dict = blk.control_volume.properties_in[ blk.flowsheet().config.time.first() ].define_port_members() for k in state_dict.keys(): if state_dict[k].is_indexed(): state_args[k] = {} for m in state_dict[k].keys(): state_args[k][m] = state_dict[k][m].value else: state_args[k] = state_dict[k].value init_log.info_high("Initialization Step 2 Complete.") # --------------------------------------------------------------------- # Solve unit with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc: res = opt.solve(blk, tee=slc.tee) init_log.info_high("Initialization Step 3 {}.".format(idaeslog.condition(res))) # --------------------------------------------------------------------- # Release Inlet state blk.control_volume.release_state(flags, outlvl + 1) init_log.info("Initialization Complete: {}".format(idaeslog.condition(res)))
def _get_performance_contents(self, time_point=0): # TODO: add other performance constants var_dict = {} if hasattr(self, "deltaP"): var_dict["Pressure Change"] = self.deltaP[time_point] return {"vars": var_dict} # TODO: add costing # def get_costing(self, module=None, **kwargs): # self.costing = Block() # module.UV_costing(self.costing, **kwargs) def calculate_scaling_factors(self): super().calculate_scaling_factors() # TODO: require users to set scaling factor for uv dose, uv_intensity and exposure time # setting scaling factors for variables # these variables should have user input, if not there will be a warning if iscale.get_scaling_factor(self.uv_intensity) is None: sf = iscale.get_scaling_factor(self.uv_intensity, default=0.1, warning=True) iscale.set_scaling_factor(self.uv_intensity, sf) if iscale.get_scaling_factor(self.exposure_time) is None: sf = iscale.get_scaling_factor( self.exposure_time, default=1e-2, warning=True ) iscale.set_scaling_factor(self.exposure_time, sf) if iscale.get_scaling_factor(self.uv_dose) is None: sf = iscale.get_scaling_factor(self.uv_dose, default=1e-3, warning=True) iscale.set_scaling_factor(self.uv_dose, sf) if iscale.get_scaling_factor(self.inactivation_rate) is None: sf = iscale.get_scaling_factor( self.inactivation_rate, default=1e4, warning=True ) iscale.set_scaling_factor(self.inactivation_rate, sf) if iscale.get_scaling_factor(self.rate_constant) is None: sf = iscale.get_scaling_factor( self.rate_constant, default=1e3, warning=True ) iscale.set_scaling_factor(self.rate_constant, sf) if iscale.get_scaling_factor(self.photolysis_rate_constant) is None: sf = iscale.get_scaling_factor( self.photolysis_rate_constant, default=1e3, warning=True ) iscale.set_scaling_factor(self.photolysis_rate_constant, sf) if iscale.get_scaling_factor(self.reaction_rate_constant) is None: sf = iscale.get_scaling_factor( self.reaction_rate_constant, default=1e3, warning=True ) iscale.set_scaling_factor(self.reaction_rate_constant, sf) if iscale.get_scaling_factor(self.electrical_efficiency_phase_comp) is None: sf = iscale.get_scaling_factor( self.electrical_efficiency_phase_comp, default=1e-6, warning=True ) iscale.set_scaling_factor(self.electrical_efficiency_phase_comp, sf) # these variables do not typically require user input, # will not override if the user does provide the scaling factor if iscale.get_scaling_factor(self.lamp_efficiency) is None: iscale.set_scaling_factor(self.lamp_efficiency, 10) if iscale.get_scaling_factor(self.UVT) is None: iscale.set_scaling_factor(self.UVT, 10) if iscale.get_scaling_factor(self.UVA) is None: iscale.set_scaling_factor(self.UVA, 100) if iscale.get_scaling_factor(self.dens_solvent) is None: sf = iscale.get_scaling_factor( self.control_volume.properties_in[0].dens_mass_phase["Liq"] ) iscale.set_scaling_factor(self.dens_solvent, sf) for (t, p, j), v in self.electricity_demand_phase_comp.items(): if iscale.get_scaling_factor(v) is None: removal = -iscale.get_scaling_factor( self.uv_dose ) * iscale.get_scaling_factor(self.inactivation_rate[p, j]) sf = ( iscale.get_scaling_factor( self.electrical_efficiency_phase_comp[t, p, j] ) * (1 / log10(1 / exp(removal))) * iscale.get_scaling_factor( self.control_volume.properties_in[t].flow_vol ) / iscale.get_scaling_factor(self.lamp_efficiency) ) iscale.set_scaling_factor(v, sf) for (t, p, j), v in self.control_volume.mass_transfer_term.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.control_volume.properties_in[t].get_material_flow_terms(p, j) ) comp = self.config.property_package.get_component(j) if comp.is_solute: sf *= 1e2 # solute typically has mass transfer 2 orders magnitude less than flow iscale.set_scaling_factor(v, sf) # TODO: update IDAES control volume to scale mass_transfer and enthalpy_transfer for ind, v in self.control_volume.mass_transfer_term.items(): (t, p, j) = ind if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.control_volume.mass_transfer_term[t, p, j] ) iscale.constraint_scaling_transform( self.control_volume.material_balances[t, j], sf ) for t, v in self.control_volume.enthalpy_transfer.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.control_volume.properties_in[t].enth_flow ) iscale.set_scaling_factor(v, sf) iscale.constraint_scaling_transform( self.control_volume.enthalpy_balances[t], sf ) # transforming constraints for c in self.eq_uv_dose.values(): if iscale.get_scaling_factor(self.uv_dose) is None: sf = iscale.get_scaling_factor( self.uv_intensity ) * iscale.get_scaling_factor(self.exposure_time) else: sf = iscale.get_scaling_factor(self.uv_dose) iscale.constraint_scaling_transform(c, sf) for c in self.eq_UVA.values(): if iscale.get_scaling_factor(self.UVA) is None: sf = -log10(iscale.get_scaling_factor(self.UVT)) else: sf = iscale.get_scaling_factor(self.UVA) iscale.constraint_scaling_transform(c, sf) for ind, c in self.eq_rate_constant.items(): if iscale.get_scaling_factor(self.rate_constant) is None: sf = iscale.get_scaling_factor( self.uv_intensity ) * iscale.get_scaling_factor(self.inactivation_rate[ind]) else: sf = iscale.get_scaling_factor(self.rate_constant[ind]) iscale.constraint_scaling_transform(c, sf) for ind, c in self.eq_overall_rate_constant.items(): if iscale.get_scaling_factor(self.rate_constant) is None: sf = iscale.get_scaling_factor( self.photolysis_rate_constant[ind] ) + iscale.get_scaling_factor(self.reaction_rate_constant[ind]) else: sf = iscale.get_scaling_factor(self.rate_constant[ind]) iscale.constraint_scaling_transform(c, sf) for ind, c in self.eq_outlet_conc.items(): (t, p, j) = ind sf = iscale.get_scaling_factor( self.control_volume.properties_in[t].get_material_flow_terms(p, j) ) iscale.constraint_scaling_transform(c, sf) for ind, c in self.eq_electricity_demand_phase_comp.items(): (t, p, j) = ind sf = iscale.get_scaling_factor(self.electricity_demand_phase_comp[t, p, j]) iscale.constraint_scaling_transform(c, sf)