Source code for watertap.unit_models.zero_order.chemical_addition_zo

###############################################################################
# WaterTAP Copyright (c) 2021, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National
# Laboratory, National Renewable Energy Laboratory, and National Energy
# Technology Laboratory (subject to receipt of any required approvals from
# the U.S. Dept. of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#
###############################################################################
"""
This module contains a zero-order representation of a chemical addition unit
operation.
"""
import pyomo.environ as pyo

from idaes.core import declare_process_block_class
from idaes.core.util.exceptions import ConfigurationError

from watertap.core import build_pt, pump_electricity, ZeroOrderBaseData

# Some more inforation about this module
__author__ = "Andrew Lee"


[docs]@declare_process_block_class("ChemicalAdditionZO") class ChemicalAdditionZOData(ZeroOrderBaseData): """ Zero-Order model for a chemical addition unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "chemical_addition" if self.config.process_subtype is None: raise ConfigurationError( f"{self.name} - zero-order chemical addition operations " "require the process_subtype configuration argument to be set" ) build_pt(self) self.chemical_dosage = pyo.Var( self.flowsheet().time, units=pyo.units.mg / pyo.units.L, bounds=(0, None), doc="Dosing rate of chemical", ) self.solution_density = pyo.Var( bounds=(0, None), units=pyo.units.kg / pyo.units.m**3, doc="Mass density of chemical solution", ) self.ratio_in_solution = pyo.Var( bounds=(0, 1), units=pyo.units.dimensionless, doc="Mass fraction of chemical in solution", ) self.chemical_flow_vol = pyo.Var( self.flowsheet().time, units=pyo.units.m**3 / pyo.units.s, bounds=(0, None), doc="Volumetric flow rate of chemical solution", ) self._fixed_perf_vars.append(self.chemical_dosage) self._fixed_perf_vars.append(self.solution_density) self._fixed_perf_vars.append(self.ratio_in_solution) self._perf_var_dict["Chemical Dosage"] = self.chemical_dosage self._perf_var_dict["Chemical Flow"] = self.chemical_flow_vol def rule_chem_flow(blk, t): return blk.chemical_flow_vol[t] == pyo.units.convert( blk.chemical_dosage[t] * blk.properties[t].flow_vol / (blk.solution_density * blk.ratio_in_solution), to_units=pyo.units.m**3 / pyo.units.s, ) self.chemical_flow_constraint = pyo.Constraint( self.flowsheet().time, rule=rule_chem_flow ) pump_electricity(self, self.chemical_flow_vol)