Source code for watertap.unit_models.zero_order.fixed_bed_zo

###############################################################################
# WaterTAP Copyright (c) 2021, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National
# Laboratory, National Renewable Energy Laboratory, and National Energy
# Technology Laboratory (subject to receipt of any required approvals from
# the U.S. Dept. of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#
###############################################################################
"""
This module contains a zero-order representation of a fixed bed unit
operation.
"""

from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_siso, constant_intensity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Adam Atia"


[docs]@declare_process_block_class("FixedBedZO") class FixedBedZOData(ZeroOrderBaseData): """ Zero-Order model for an Ion exchange unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "fixed_bed" build_siso(self) constant_intensity(self) self.recovery_frac_mass_H2O.fix(1) # Chemical demands self.acetic_acid_dose = Var( units=pyunits.kg / pyunits.m**3, bounds=(0, None), doc="Dosing rate of acetic acid", ) self.phosphoric_acid_dose = Var( units=pyunits.kg / pyunits.m**3, bounds=(0, None), doc="Dosing rate of phosphoric acid", ) self.ferric_chloride_dose = Var( units=pyunits.kg / pyunits.m**3, bounds=(0, None), doc="Dosing rate of ferric chloride", ) self._fixed_perf_vars.append(self.acetic_acid_dose) self._fixed_perf_vars.append(self.phosphoric_acid_dose) self._fixed_perf_vars.append(self.ferric_chloride_dose) self.acetic_acid_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Consumption rate of acetic acid", ) self.phosphoric_acid_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Consumption rate of phosphoric acid", ) self.ferric_chloride_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Consumption rate of ferric chloride", ) self._perf_var_dict["Acetic Acid Demand"] = self.acetic_acid_demand self._perf_var_dict["Phosphoric Acid Demand"] = self.phosphoric_acid_demand self._perf_var_dict["Ferric Chlorided Demand"] = self.ferric_chloride_demand @self.Constraint(self.flowsheet().time, doc="Acetic acid demand constraint") def acetic_acid_demand_equation(b, t): return b.acetic_acid_demand[t] == pyunits.convert( b.acetic_acid_dose * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.hr, ) @self.Constraint(self.flowsheet().time, doc="Phosphoric acid demand constraint") def phosphoric_acid_demand_equation(b, t): return b.phosphoric_acid_demand[t] == pyunits.convert( b.phosphoric_acid_dose * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.hr, ) @self.Constraint(self.flowsheet().time, doc="Acetic acid demand constraint") def ferric_chloride_demand_equation(b, t): return b.ferric_chloride_demand[t] == pyunits.convert( b.ferric_chloride_dose * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.hr, ) # Activated Carbon demand self.activated_carbon_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Replacement rate for activated carbon", ) self.activated_carbon_parameter_a = Var( units=pyunits.kg / pyunits.m**3, bounds=(0, None), doc="Pre-exponential factor for activated carbon demand", ) self.activated_carbon_parameter_b = Var( units=pyunits.dimensionless, bounds=(None, None), doc="Exponential factor for activated carbon demand", ) self._fixed_perf_vars.append(self.activated_carbon_parameter_a) self._fixed_perf_vars.append(self.activated_carbon_parameter_b) self._perf_var_dict["Activated Carbon Demand"] = self.activated_carbon_demand @self.Constraint( self.flowsheet().time, doc="Activated carbon demand constraint" ) def activated_carbon_demand_equation(b, t): return b.activated_carbon_demand[t] == pyunits.convert( b.activated_carbon_parameter_a * pyunits.convert( b.properties_in[t].flow_vol / (pyunits.m**3 / pyunits.hour), to_units=pyunits.dimensionless, ) ** b.activated_carbon_parameter_b * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.hr, ) # Sand demand self.sand_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Replacement rate for sand", ) self.sand_parameter_a = Var( units=pyunits.kg / pyunits.m**3, bounds=(0, None), doc="Pre-exponential factor for sand demand", ) self.sand_parameter_b = Var( units=pyunits.dimensionless, bounds=(None, None), doc="Exponential factor for sand demand", ) self._fixed_perf_vars.append(self.sand_parameter_a) self._fixed_perf_vars.append(self.sand_parameter_b) self._perf_var_dict["Sand Demand"] = self.sand_demand @self.Constraint(self.flowsheet().time, doc="Sand demand constraint") def sand_demand_equation(b, t): return b.sand_demand[t] == pyunits.convert( b.sand_parameter_a * pyunits.convert( b.properties_in[t].flow_vol / (pyunits.m**3 / pyunits.hour), to_units=pyunits.dimensionless, ) ** b.sand_parameter_b * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.hr, ) # Anthracite demand self.anthracite_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Replacement rate for anthracite", ) self.anthracite_parameter_a = Var( units=pyunits.kg / pyunits.m**3, bounds=(0, None), doc="Pre-exponential factor for anthracite demand", ) self.anthracite_parameter_b = Var( units=pyunits.dimensionless, bounds=(None, None), doc="Exponential factor for anthracite demand", ) self._fixed_perf_vars.append(self.anthracite_parameter_a) self._fixed_perf_vars.append(self.anthracite_parameter_b) self._perf_var_dict["Anthracite Demand"] = self.anthracite_demand @self.Constraint(self.flowsheet().time, doc="Anthracite demand constraint") def anthracite_demand_equation(b, t): return b.anthracite_demand[t] == pyunits.convert( b.anthracite_parameter_a * pyunits.convert( b.properties_in[t].flow_vol / (pyunits.m**3 / pyunits.hour), to_units=pyunits.dimensionless, ) ** b.anthracite_parameter_b * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.hr, ) # Cationic polymer demand self.cationic_polymer_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Replacement rate for cationic polymer", ) self.cationic_polymer_parameter_a = Var( units=pyunits.kg / pyunits.m**3, bounds=(0, None), doc="Pre-exponential factor for cationic polymer demand", ) self.cationic_polymer_parameter_b = Var( units=pyunits.dimensionless, bounds=(None, None), doc="Exponential factor for cationic polymer demand", ) self._fixed_perf_vars.append(self.cationic_polymer_parameter_a) self._fixed_perf_vars.append(self.cationic_polymer_parameter_b) self._perf_var_dict["Cationic Polymer Demand"] = self.cationic_polymer_demand @self.Constraint( self.flowsheet().time, doc="Cationic Polymer demand constraint" ) def cationic_polymer_demand_equation(b, t): return b.cationic_polymer_demand[t] == pyunits.convert( b.cationic_polymer_parameter_a * pyunits.convert( b.properties_in[t].flow_vol / (pyunits.m**3 / pyunits.hour), to_units=pyunits.dimensionless, ) ** b.cationic_polymer_parameter_b * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.hr, )