Source code for watertap.unit_models.zero_order.gac_zo

###############################################################################
# WaterTAP Copyright (c) 2021, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National
# Laboratory, National Renewable Energy Laboratory, and National Energy
# Technology Laboratory (subject to receipt of any required approvals from
# the U.S. Dept. of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#
###############################################################################
"""
This module contains a zero-order representation of a granular activated carbon unit
operation.
"""

from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_sido, ZeroOrderBaseData

# Some more information about this module
__author__ = "Adam Atia"


[docs]@declare_process_block_class("GACZO") class GACZOData(ZeroOrderBaseData): """ Zero-Order model for a granular activated carbon unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "gac" build_sido(self) # Empty Bed Contact Time self.empty_bed_contact_time = Var( units=pyunits.hour, bounds=(0, None), doc="Empty bed contact time of unit" ) self._fixed_perf_vars.append(self.empty_bed_contact_time) self._perf_var_dict["Empty Bed Contact Time"] = self.empty_bed_contact_time # Electricity Demand self.electricity = Var( self.flowsheet().time, units=pyunits.kW, bounds=(0, None), doc="Electricity consumption of unit", ) self.electricity_intensity_parameter = Var( units=pyunits.kW / pyunits.m**3, doc="Parameter for calculating electricity based on empty bed " "contact time", ) self.energy_electric_flow_vol_inlet = Var( units=pyunits.kWh / pyunits.m**3, doc="Electricity intensity with respect to inlet flowrate of unit", ) @self.Constraint(doc="Electricity intensity based on empty bed contact time.") def electricity_intensity_constraint(b): return ( b.energy_electric_flow_vol_inlet == b.electricity_intensity_parameter * b.empty_bed_contact_time ) @self.Constraint( self.flowsheet().time, doc="Constraint for electricity consumption based on " "feed flowrate.", ) def electricity_consumption(b, t): return b.electricity[t] == ( b.energy_electric_flow_vol_inlet * pyunits.convert( b.get_inlet_flow(t), to_units=pyunits.m**3 / pyunits.hour ) ) self._fixed_perf_vars.append(self.electricity_intensity_parameter) self._perf_var_dict["Electricity Demand"] = self.electricity self._perf_var_dict[ "Electricity Intensity" ] = self.energy_electric_flow_vol_inlet # Demand for activated carbon self.activated_carbon_replacement = Var( units=pyunits.kg / pyunits.m**3, bounds=(0, None), doc="Replacement rate of activated carbon", ) self.activated_carbon_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hour, bounds=(0, None), doc="Demand for activated carbon", ) @self.Constraint( self.flowsheet().time, doc="Constraint for activated carbon consumption." ) def activated_carbon_equation(b, t): return b.activated_carbon_demand[t] == ( b.activated_carbon_replacement * pyunits.convert( b.get_inlet_flow(t), to_units=pyunits.m**3 / pyunits.hour ) ) self._fixed_perf_vars.append(self.activated_carbon_replacement) self._perf_var_dict["Activated Carbon Demand"] = self.activated_carbon_demand