Source code for watertap.unit_models.zero_order.iron_and_manganese_removal_zo

###############################################################################
# WaterTAP Copyright (c) 2021, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National
# Laboratory, National Renewable Energy Laboratory, and National Energy
# Technology Laboratory (subject to receipt of any required approvals from
# the U.S. Dept. of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#
###############################################################################
"""
This module contains a zero-order representation of an iron and manganese removal unit.
"""

from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_sido, ZeroOrderBaseData

# Some more information about this module
__author__ = "Chenyu Wang"


[docs]@declare_process_block_class("IronManganeseRemovalZO") class IronManganeseRemovalZOData(ZeroOrderBaseData): """ Zero-Order model for an iron and manganese removal unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "iron_and_manganese_removal" build_sido(self) self.air_water_ratio = Var( self.flowsheet().time, units=pyunits.dimensionless, doc="Ratio of air to water", ) self.flow_basis = Var( self.flowsheet().time, units=pyunits.m**3 / pyunits.hour, doc="Flow basis" ) self.air_flow_rate = Var( self.flowsheet().time, units=pyunits.m**3 / pyunits.hour, doc="Air flow rate", ) self.electricity_intensity_parameter = Var( units=pyunits.hp / (pyunits.m**3 / pyunits.hour), doc="Constant in electricity intensity equation", ) self.filter_surf_area = Var( units=pyunits.m**2, doc="Dual media filter surface area" ) self.num_filter_units = Var( units=pyunits.dimensionless, doc="Number of dual media filter units" ) self.electricity = Var( self.flowsheet().config.time, units=pyunits.kW, bounds=(0, None), doc="Power consumption of iron and manganese removal", ) self.electricity_intensity = Var( self.flowsheet().config.time, units=pyunits.kWh / pyunits.m**3, doc="Specific energy consumption with respect to feed flowrate", ) self._fixed_perf_vars.append(self.air_water_ratio) self._fixed_perf_vars.append(self.flow_basis) self._fixed_perf_vars.append(self.electricity_intensity_parameter) self._fixed_perf_vars.append(self.filter_surf_area) self._fixed_perf_vars.append(self.num_filter_units) @self.Constraint(self.flowsheet().config.time, doc="Air flow rate constraint") def air_flow_rate_constraint(b, t): return b.air_flow_rate[t] == b.air_water_ratio[t] * b.flow_basis[t] @self.Constraint( self.flowsheet().config.time, doc="Electricity intensity constraint" ) def electricity_intensity_constraint(b, t): q_in = pyunits.convert( b.properties_in[t].flow_vol, to_units=pyunits.m**3 / pyunits.hour ) return b.electricity_intensity[t] == pyunits.convert( b.electricity_intensity_parameter * b.air_flow_rate[t] / q_in, to_units=pyunits.kWh / pyunits.m**3, ) @self.Constraint( self.flowsheet().config.time, doc="Power consumption constraint" ) def electricity_constraint(b, t): q_in = pyunits.convert( b.properties_in[t].flow_vol, to_units=pyunits.m**3 / pyunits.hour ) return b.electricity[t] == b.electricity_intensity[t] * q_in self._perf_var_dict["Power Consumption (kW)"] = self.electricity self._perf_var_dict[ "Electricity intensity per Inlet Flowrate (kWh/m3)" ] = self.electricity_intensity