Source code for watertap.unit_models.zero_order.mabr_zo

###############################################################################
# WaterTAP Copyright (c) 2021, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National
# Laboratory, National Renewable Energy Laboratory, and National Energy
# Technology Laboratory (subject to receipt of any required approvals from
# the U.S. Dept. of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#
###############################################################################
"""
This module contains a zero-order representation of a membrane aerated biofilm reactor unit.
"""

from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_sido_reactive, ZeroOrderBaseData

# Some more information about this module
__author__ = "Chenyu Wang"


[docs]@declare_process_block_class("MABRZO") class MABRZOData(ZeroOrderBaseData): """ Zero-Order model for a MABR unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "mabr" build_sido_reactive(self) self.nitrogen_removal_rate = Var( units=pyunits.g / pyunits.m**2 / pyunits.day, bounds=(0, None), doc="Nitrogen removal rate per day", ) self._fixed_perf_vars.append(self.nitrogen_removal_rate) self.reactor_area = Var( units=pyunits.m**2, bounds=(0, None), doc="Sizing variable for effective reactor area", ) @self.Constraint( self.flowsheet().time, doc="Constraint for effective reactor area", ) def reactor_area_constraint(b, t): return b.reactor_area == pyunits.convert( b.properties_treated[t].flow_mass_comp["ammonium_as_nitrogen"] / b.nitrogen_removal_rate, to_units=pyunits.m**2, ) self._perf_var_dict["Reactor Area"] = self.reactor_area self.air_flow_rate = Var( self.flowsheet().config.time, units=pyunits.m**3 / pyunits.hour / pyunits.m**2, bounds=(0, None), doc="Air flow rate per area", ) self._fixed_perf_vars.append(self.air_flow_rate) self.air_flow_vol = Var( self.flowsheet().config.time, units=pyunits.m**3 / pyunits.hour, bounds=(0, None), doc="Volumetric air flow rate", ) @self.Constraint( self.flowsheet().time, doc="Constraint for air flow", ) def air_flow_constraint(b, t): return b.air_flow_vol[t] == pyunits.convert( b.air_flow_rate[t] * b.reactor_area, to_units=pyunits.m**3 / pyunits.hour, ) self._perf_var_dict["Volumetric Air Flow Rate"] = self.air_flow_vol self.electricity = Var( self.flowsheet().time, units=pyunits.kW, bounds=(0, None), doc="Electricity consumption of unit", ) self._perf_var_dict["Electricity Demand"] = self.electricity self.energy_electric_flow_vol_inlet = Var( units=pyunits.kWh / pyunits.m**3, doc="Electricity intensity with respect to inlet flowrate of unit", ) @self.Constraint( self.flowsheet().time, doc="Constraint for electricity consumption based on air flowrate.", ) def electricity_consumption(b, t): return b.electricity[t] == ( b.energy_electric_flow_vol_inlet * pyunits.convert( b.air_flow_vol[t], to_units=pyunits.m**3 / pyunits.hour ) ) self._fixed_perf_vars.append(self.energy_electric_flow_vol_inlet) self._perf_var_dict[ "Electricity Intensity" ] = self.energy_electric_flow_vol_inlet