Source code for watertap.unit_models.zero_order.anaerobic_mbr_mec_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of an integrated anaerobic membrane bioreactor
with microbial electrolysis cell (anaerobic MBR-MEC).
"""

import pyomo.environ as pyo
from pyomo.environ import Reference
from idaes.core import declare_process_block_class
from watertap.core import build_sido_reactive, pump_electricity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Adam Atia"


[docs]@declare_process_block_class("AnaerobicMBRMECZO") class AnaerobicMBRMECZOData(ZeroOrderBaseData): """ Zero-Order model for an anaerobic MBR-MEC unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "anaerobic_mbr_mec" if "nonbiodegradable_cod" not in self.config.property_package.solute_set: raise ValueError( "nonbiodegradable_cod must be included in the solute list since" " this unit model converts cod to nonbiodegradable_cod." ) build_sido_reactive(self) self._Q = Reference(self.properties_in[:].flow_vol) pump_electricity(self, self._Q)
@property def default_costing_method(self): return self.cost_anaerobic_mbr_mec
[docs] @staticmethod def cost_anaerobic_mbr_mec(blk): """ Method for costing anaerobic membrane bioreactor integrated with microbial electrolysis cell. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology unit_capex, unit_opex = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["unit_capex", "unit_opex"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) capex_expr = pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol * unit_capex, to_units=blk.config.flowsheet_costing_block.base_currency, ) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * capex_expr ) # Add fixed operating cost variable and constraint blk.fixed_operating_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency / blk.config.flowsheet_costing_block.base_period, bounds=(0, None), doc="Fixed operating cost of unit", ) blk.fixed_operating_cost_constraint = pyo.Constraint( expr=blk.fixed_operating_cost == pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol * unit_opex, to_units=blk.config.flowsheet_costing_block.base_currency / blk.config.flowsheet_costing_block.base_period, ) ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )