Source code for watertap.unit_models.zero_order.clarifier_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a clarifier unit
operation.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class

from watertap.core import build_sido, constant_intensity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Adam Atia"


[docs]@declare_process_block_class("ClarifierZO") class ClarifierZOData(ZeroOrderBaseData): """ Zero-Order model for a Clarifier unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "clarifier" build_sido(self) constant_intensity(self) if self.config.process_subtype == "HRCS_clarifier": self.ferric_chloride_dose = Var( self.flowsheet().time, units=pyunits.mg / pyunits.L, bounds=(0, None), doc="Dosing rate of ferric chloride", ) self._fixed_perf_vars.append(self.ferric_chloride_dose) self.ferric_chloride_demand = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Consumption rate of ferric chloride", ) self._perf_var_dict["Ferric Chloride Demand"] = self.ferric_chloride_demand @self.Constraint( self.flowsheet().time, doc="ferric chloride demand constraint" ) def ferric_chloride_demand_equation(b, t): return b.ferric_chloride_demand[t] == pyunits.convert( b.ferric_chloride_dose[t] * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.hr, )
@property def default_costing_method(self): return self.cost_clarifier
[docs] @staticmethod def cost_clarifier(blk, number_of_parallel_units=1): """ General method for costing clarifiers. Costing is carried out using either the general_power_law form or the standard form which computes HRT, sizing costs, and chemical input costs. Args: number_of_parallel_units (int, optional) - cost this unit as number_of_parallel_units parallel units (default: 1) """ # Get cost method for this technology cost_method = blk.unit_model._get_unit_cost_method(blk) valid_methods = ["cost_power_law_flow", "cost_HRCS_clarifier"] if cost_method == "cost_power_law_flow": blk.unit_model.cost_power_law_flow(blk, number_of_parallel_units) elif cost_method == "cost_HRCS_clarifier": # NOTE: number of units does not matter for cost_HRCS_clarifier # as its a linear function of membrane area blk.unit_model.cost_HRCS_clarifier(blk) else: raise KeyError( f"{cost_method} is not a relevant cost method for " f"{blk.unit_model._tech_type}. Specify one of the following " f"cost methods in the unit's YAML file: {valid_methods}" )
[docs] @staticmethod def cost_HRCS_clarifier(blk): """ Method for costing a clarifier unit in a high-rate contact stabilization (HRCS) process. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology HRT, size_cost = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["HRT", "sizing_cost"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) expr = pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol * HRT * size_cost, to_units=blk.config.flowsheet_costing_block.base_currency, ) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" ) blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.ferric_chloride_demand[t0], "ferric_chloride" )