Source code for watertap.unit_models.zero_order.deep_well_injection_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a deep well injection unit.
"""

import pyomo.environ as pyo
from pyomo.environ import Reference, units as pyunits, Var
from idaes.core import declare_process_block_class

from watertap.core import build_pt, pump_electricity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Chenyu Wang"


[docs]@declare_process_block_class("DeepWellInjectionZO") class DeepWellInjectionZOData(ZeroOrderBaseData): """ Zero-Order model for a deep well injection unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "deep_well_injection" build_pt(self) self._Q = Reference(self.properties[:].flow_vol) pump_electricity(self, self._Q) self.pipe_distance = Var( self.flowsheet().config.time, units=pyunits.miles, doc="Piping distance" ) self.pipe_diameter = Var( self.flowsheet().config.time, units=pyunits.inches, doc="Pipe diameter" ) self.flow_basis = Var( self.flowsheet().time, units=pyunits.m**3 / pyunits.hour, doc="flow basis" ) self._fixed_perf_vars.append(self.pipe_distance) self._fixed_perf_vars.append(self.pipe_diameter) self._fixed_perf_vars.append(self.flow_basis) self._perf_var_dict["Pipe Distance (miles)"] = self.pipe_distance self._perf_var_dict["Pipe Diameter (inches)"] = self.pipe_diameter
@property def default_costing_method(self): return self.cost_deep_well_injection
[docs] @staticmethod def cost_deep_well_injection(blk, number_of_parallel_units=1): """ General method for costing deep well injection processes. Capital cost is based on the cost of pump and pipe. This method also registers the electricity demand as a costed flow. Args: number_of_parallel_units (int, optional) - cost this unit as number_of_parallel_units parallel units (default: 1) """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B, C = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["well_pump_cost", "pipe_cost_basis", "flow_exponent"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) cost_well_pump = A cost_pipe = ( B * blk.unit_model.pipe_distance[t0] * blk.unit_model.pipe_diameter[t0] ) cost_total = pyo.units.convert( cost_well_pump + cost_pipe, to_units=blk.config.flowsheet_costing_block.base_currency, ) Q = pyo.units.convert( blk.unit_model.properties[t0].flow_vol, to_units=pyo.units.m**3 / pyo.units.hour, ) sizing_term = Q / blk.unit_model.flow_basis[t0] # Determine if a costing factor is required factor = parameter_dict["capital_cost"]["cost_factor"] # Call general power law costing method blk.unit_model._general_power_law_form( blk, cost_total, C, sizing_term, factor, number_of_parallel_units, ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )