Source code for watertap.unit_models.zero_order.filter_press_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a filter press unit
operation.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class

from watertap.core import build_sido, ZeroOrderBaseData

# Some more information about this module
__author__ = "Kurban Sitterley"


[docs]@declare_process_block_class("FilterPressZO") class FilterPressZOData(ZeroOrderBaseData): """ Zero-Order model for a filter press unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "filter_press" build_sido(self) self.hours_per_day_operation = Var( self.flowsheet().time, units=pyunits.hour / pyunits.day, doc="Hours per day of filter press operation", ) self.cycle_time = Var( self.flowsheet().time, units=pyunits.hours, doc="Filter press cycle time" ) self.electricity_a_parameter = Var( self.flowsheet().time, units=pyunits.kWh / (pyunits.year * pyunits.ft**3), doc="Parameter A for electricity calculation", ) self.electricity_b_parameter = Var( self.flowsheet().time, units=pyunits.dimensionless, doc="Parameter B for electricity calculation", ) self._fixed_perf_vars.append(self.hours_per_day_operation) self._fixed_perf_vars.append(self.cycle_time) self._fixed_perf_vars.append(self.electricity_a_parameter) self._fixed_perf_vars.append(self.electricity_b_parameter) self.filter_press_capacity = Var( self.flowsheet().time, initialize=10, units=pyunits.ft**3, doc="Filter press capacity", ) self.electricity = Var( self.flowsheet().time, units=pyunits.kW, bounds=(0, None), doc="Filter press power", ) @self.Constraint(self.flowsheet().time, doc="Filter press capacity constraint") def fp_capacity(b, t): Q = b.properties_in[t].flow_vol return b.filter_press_capacity[t] == pyunits.convert( Q, to_units=pyunits.ft**3 / pyunits.day ) / (b.hours_per_day_operation[t] / b.cycle_time[t]) @self.Constraint( self.flowsheet().time, doc="Filter press electricity constraint" ) def fp_electricity(b, t): Q = b.properties_in[t].flow_vol A = pyunits.convert( b.electricity_a_parameter[t] / (pyunits.kWh / (pyunits.year * pyunits.ft**3)), to_units=pyunits.dimensionless, ) fp_cap = pyunits.convert( b.filter_press_capacity[t] / pyunits.ft**3, to_units=pyunits.dimensionless, ) return b.electricity[t] == (A * fp_cap ** b.electricity_b_parameter[t]) * ( pyunits.kWh / pyunits.year ) / pyunits.convert( Q, to_units=pyunits.m**3 / pyunits.yr ) * pyunits.convert( Q, to_units=pyunits.m**3 / pyunits.hr ) self._perf_var_dict["Filter Press Capacity (ft3)"] = self.filter_press_capacity self._perf_var_dict["Filter Press Power (kW)"] = self.electricity
@property def default_costing_method(self): return self.cost_filter_press
[docs] @staticmethod def cost_filter_press(blk): """ General method for costing belt filter press. Capital cost is a function of flow in gal/hr. """ t0 = blk.flowsheet().time.first() # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) Q = pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol, to_units=pyo.units.gal / pyo.units.hr, ) # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["capital_a_parameter", "capital_b_parameter"], ) # Determine if a costing factor is required factor = parameter_dict["capital_cost"]["cost_factor"] expr = pyo.units.convert( A * Q + B, to_units=blk.config.flowsheet_costing_block.base_currency ) blk.capital_cost_constraint = pyo.Constraint(expr=blk.capital_cost == expr) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )