Source code for watertap.unit_models.zero_order.hydrothermal_gasification_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a hydrothermal gasification unit.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_sido_reactive, ZeroOrderBaseData

# Some more information about this module
__author__ = "Chenyu Wang"


[docs]@declare_process_block_class("HTGZO") class HTGZOData(ZeroOrderBaseData): """ Zero-Order model for a hydrothermal gasification (HTG) unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "hydrothermal_gasification" build_sido_reactive(self) self.flow_mass_in = Var( self.flowsheet().time, units=pyunits.t / pyunits.hour, bounds=(0, None), doc="Inlet mass flowrate", ) @self.Constraint( self.flowsheet().time, doc="Constraint for inlet mass flowrate.", ) def cons_flow_mass(b, t): return b.flow_mass_in[t] == pyunits.convert( sum( b.properties_in[t].flow_mass_comp[j] for j in b.properties_in[t].component_list ), to_units=pyunits.t / pyunits.hour, ) self._perf_var_dict["Inlet Mass Flowrate"] = self.flow_mass_in self.electricity = Var( self.flowsheet().time, units=pyunits.kW, bounds=(0, None), doc="Electricity consumption of unit", ) self._perf_var_dict["Electricity Demand"] = self.electricity self.energy_electric_flow_mass = Var( units=pyunits.kWh / pyunits.t, doc="Electricity intensity with respect to inlet flowrate", ) @self.Constraint( self.flowsheet().time, doc="Constraint for electricity consumption based on inlet flowrate.", ) def electricity_consumption(b, t): return b.electricity[t] == pyunits.convert( b.energy_electric_flow_mass * b.flow_mass_in[t], to_units=pyunits.kW ) self._fixed_perf_vars.append(self.energy_electric_flow_mass) self._perf_var_dict["Electricity Intensity"] = self.energy_electric_flow_mass self.catalyst_dosage = Var( units=pyunits.pound / pyunits.t, bounds=(0, None), doc="Dosage of catalyst per inlet flow", ) self._fixed_perf_vars.append(self.catalyst_dosage) self._perf_var_dict["Dosage of catalyst per inlet flow"] = self.catalyst_dosage self.catalyst_flow = Var( self.flowsheet().time, units=pyunits.pound / pyunits.hr, bounds=(0, None), doc="Catalyst flow", ) self._perf_var_dict["Catalyst flow"] = self.catalyst_flow @self.Constraint( self.flowsheet().time, doc="Constraint for catalyst flow based on inlet flow rate.", ) def eq_catalyst_flow(b, t): return b.catalyst_flow[t] == pyunits.convert( b.catalyst_dosage * b.flow_mass_in[t], to_units=pyunits.pound / pyunits.hr, )
@property def default_costing_method(self): return self.cost_hydrothermal_gasification
[docs] @staticmethod def cost_hydrothermal_gasification(blk): """ General method for costing hydrothermal gasification unit. Capital cost is based on the CHG reactor and other wastewater treatment equipment including a feed pump, a booster pump, a feed/product exchanger, a fired heater, a hydrocyclone, and a product air fin cooler. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology ( IF_reactor, EP_reactor, F0_reactor, SE_reactor, IF_pump, EP_pump, F0_pump, SE_pump, IF_booster, EP_booster, F0_booster, SE_booster, IF_hydrocyclone, EP_hydrocyclone, F0_hydrocyclone, SE_hydrocyclone, IF_cooler, EP_cooler, F0_cooler, SE_cooler, IF_exchanger, EP_exchanger, F0_exchanger, Fnew_exchanger, SE_exchanger, IF_heater, EP_heater, F0_heater, Fnew_heater, SE_heater, ) = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, [ "installation_factor_reactor", "equipment_cost_reactor", "base_flowrate_reactor", "scaling_exponent_reactor", "installation_factor_pump", "equipment_cost_pump", "base_flowrate_pump", "scaling_exponent_pump", "installation_factor_booster", "equipment_cost_booster", "base_flowrate_booster", "scaling_exponent_booster", "installation_factor_hydrocyclone", "equipment_cost_hydrocyclone", "base_flowrate_hydrocyclone", "scaling_exponent_hydrocyclone", "installation_factor_cooler", "equipment_cost_cooler", "base_flowrate_cooler", "scaling_exponent_cooler", "installation_factor_exchanger", "equipment_cost_exchanger", "base_area_exchanger", "new_area_exchanger", "scaling_exponent_exchanger", "installation_factor_heater", "equipment_cost_heater", "base_heat_duty_heater", "new_heat_duty_heater", "scaling_exponent_heater", ], ) sizing_term_reactor = pyo.units.convert( (blk.unit_model.flow_mass_in[t0] / F0_reactor), to_units=pyo.units.dimensionless, ) sizing_term_pump = pyo.units.convert( (blk.unit_model.flow_mass_in[t0] / F0_pump), to_units=pyo.units.dimensionless, ) sizing_term_booster = pyo.units.convert( (blk.unit_model.flow_mass_in[t0] / F0_booster), to_units=pyo.units.dimensionless, ) sizing_term_hydrocyclone = pyo.units.convert( (blk.unit_model.flow_mass_in[t0] / F0_hydrocyclone), to_units=pyo.units.dimensionless, ) sizing_term_cooler = pyo.units.convert( (blk.unit_model.flow_mass_in[t0] / F0_cooler), to_units=pyo.units.dimensionless, ) sizing_term_exchanger = pyo.units.convert( (Fnew_exchanger / F0_exchanger), to_units=pyo.units.dimensionless, ) sizing_term_heater = pyo.units.convert( (Fnew_heater / F0_heater), to_units=pyo.units.dimensionless, ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) reactor_cost = pyo.units.convert( IF_reactor * EP_reactor * sizing_term_reactor**SE_reactor, to_units=blk.config.flowsheet_costing_block.base_currency, ) pump_cost = pyo.units.convert( IF_pump * EP_pump * sizing_term_pump**SE_pump, to_units=blk.config.flowsheet_costing_block.base_currency, ) booster_cost = pyo.units.convert( IF_booster * EP_booster * sizing_term_booster**SE_booster, to_units=blk.config.flowsheet_costing_block.base_currency, ) hydrocyclone_cost = pyo.units.convert( IF_hydrocyclone * EP_hydrocyclone * sizing_term_hydrocyclone**SE_hydrocyclone, to_units=blk.config.flowsheet_costing_block.base_currency, ) cooler_cost = pyo.units.convert( IF_cooler * EP_cooler * sizing_term_cooler**SE_cooler, to_units=blk.config.flowsheet_costing_block.base_currency, ) exchanger_cost = pyo.units.convert( IF_exchanger * EP_exchanger * sizing_term_exchanger**SE_exchanger, to_units=blk.config.flowsheet_costing_block.base_currency, ) heater_cost = pyo.units.convert( IF_heater * EP_heater * sizing_term_heater**SE_heater, to_units=blk.config.flowsheet_costing_block.base_currency, ) expr = ( reactor_cost + pump_cost + booster_cost + hydrocyclone_cost + cooler_cost + exchanger_cost + heater_cost ) blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" ) blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.catalyst_flow[t0], "catalyst_HTG" )