Source code for watertap.unit_models.zero_order.mabr_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a membrane aerated biofilm reactor unit.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_sido_reactive, ZeroOrderBaseData

# Some more information about this module
__author__ = "Chenyu Wang"


[docs]@declare_process_block_class("MABRZO") class MABRZOData(ZeroOrderBaseData): """ Zero-Order model for a MABR unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "mabr" build_sido_reactive(self) self.nitrogen_removal_rate = Var( units=pyunits.g / pyunits.m**2 / pyunits.day, bounds=(0, None), doc="Nitrogen removal rate per day", ) self._fixed_perf_vars.append(self.nitrogen_removal_rate) self.reactor_area = Var( units=pyunits.m**2, bounds=(0, None), doc="Sizing variable for effective reactor area", ) @self.Constraint( self.flowsheet().time, doc="Constraint for effective reactor area", ) def reactor_area_constraint(b, t): return b.reactor_area == pyunits.convert( b.properties_treated[t].flow_mass_comp["ammonium_as_nitrogen"] / b.nitrogen_removal_rate, to_units=pyunits.m**2, ) self._perf_var_dict["Reactor Area"] = self.reactor_area self.air_flow_rate = Var( self.flowsheet().config.time, units=pyunits.m**3 / pyunits.hour / pyunits.m**2, bounds=(0, None), doc="Air flow rate per area", ) self._fixed_perf_vars.append(self.air_flow_rate) self.air_flow_vol = Var( self.flowsheet().config.time, units=pyunits.m**3 / pyunits.hour, bounds=(0, None), doc="Volumetric air flow rate", ) @self.Constraint( self.flowsheet().time, doc="Constraint for air flow", ) def air_flow_constraint(b, t): return b.air_flow_vol[t] == pyunits.convert( b.air_flow_rate[t] * b.reactor_area, to_units=pyunits.m**3 / pyunits.hour, ) self._perf_var_dict["Volumetric Air Flow Rate"] = self.air_flow_vol self.electricity = Var( self.flowsheet().time, units=pyunits.kW, bounds=(0, None), doc="Electricity consumption of unit", ) self._perf_var_dict["Electricity Demand"] = self.electricity self.energy_electric_flow_vol_inlet = Var( units=pyunits.kWh / pyunits.m**3, doc="Electricity intensity with respect to inlet flowrate of unit", ) @self.Constraint( self.flowsheet().time, doc="Constraint for electricity consumption based on air flowrate.", ) def electricity_consumption(b, t): return b.electricity[t] == ( b.energy_electric_flow_vol_inlet * pyunits.convert( b.air_flow_vol[t], to_units=pyunits.m**3 / pyunits.hour ) ) self._fixed_perf_vars.append(self.energy_electric_flow_vol_inlet) self._perf_var_dict["Electricity Intensity"] = ( self.energy_electric_flow_vol_inlet )
@property def default_costing_method(self): return self.cost_mabr
[docs] @staticmethod def cost_mabr(blk): """ General method for costing membrane aerated biofilm reactor. Capital cost is based on the cost of reactor and blower. This method also registers the electricity demand as a costed flow. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["reactor_cost", "blower_cost"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) DCC_reactor = pyo.units.convert( blk.unit_model.properties_treated[t0].flow_mass_comp["ammonium_as_nitrogen"] / blk.unit_model.nitrogen_removal_rate * A, to_units=blk.config.flowsheet_costing_block.base_currency, ) DCC_blower = pyo.units.convert( blk.unit_model.reactor_area * blk.unit_model.air_flow_rate[t0] * B, to_units=blk.config.flowsheet_costing_block.base_currency, ) expr = DCC_reactor + DCC_blower blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )