Source code for watertap.unit_models.zero_order.magprex_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a Magprex reactor unit
for struvite precipitation.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_sido_reactive, constant_intensity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Marcus Holly"


[docs]@declare_process_block_class("MagprexZO") class MagprexZOData(ZeroOrderBaseData): """ Zero-Order model for a Magprex reactor unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "magprex" build_sido_reactive(self) constant_intensity(self) self.magnesium_chloride_dosage = Var( units=pyunits.dimensionless, bounds=(0, None), doc="Dosage of magnesium chloride per phosphates", ) self._fixed_perf_vars.append(self.magnesium_chloride_dosage) self._perf_var_dict["Dosage of magnesium chloride per phosphates"] = ( self.magnesium_chloride_dosage ) self.MgCl2_flowrate = Var( self.flowsheet().time, units=pyunits.kg / pyunits.hr, bounds=(0, None), doc="Magnesium chloride flowrate", ) self._perf_var_dict["Magnesium Chloride Demand"] = self.MgCl2_flowrate @self.Constraint( self.flowsheet().time, doc="Constraint for magnesium chloride demand based on sludge flowrate.", ) def MgCl2_demand(b, t): return b.MgCl2_flowrate[t] == ( b.magnesium_chloride_dosage * pyunits.convert( b.properties_in[t].flow_mass_comp["phosphates"], to_units=pyunits.kg / pyunits.hour, ) )
@property def default_costing_method(self): return self.cost_magprex
[docs] @staticmethod def cost_magprex(blk): """ Method for costing Magprex reactor unit. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology HRT, size_cost = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["HRT", "sizing_cost"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) expr = pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol * HRT * size_cost, to_units=blk.config.flowsheet_costing_block.base_currency, ) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" ) blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.MgCl2_flowrate[t0], "magnesium_chloride" )