Source code for watertap.unit_models.zero_order.membrane_evaporator_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################

"""
This module contains a zero-order representation of a membrane evaporation.
"""

import pyomo.environ as pyo
from pyomo.environ import Var, units as pyunits
from idaes.core import declare_process_block_class
from watertap.core import build_sido, constant_intensity, ZeroOrderBaseData


# Some more information about this module
__author__ = "Travis Arnold"


[docs]@declare_process_block_class("MembraneEvaporatorZO") class MembraneEvaporatorData(ZeroOrderBaseData): """ Zero-Order model for a membrane evaporator. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "membrane_evaporator" build_sido(self) constant_intensity(self) # Create water flux variable self.water_flux = Var( units=pyunits.m / pyunits.hr, bounds=(0, None), doc="Water flux through membrane", ) self._perf_var_dict["Water Flux"] = self.water_flux self._fixed_perf_vars.append(self.water_flux) # Create membrane area variable self.membrane_area = Var( units=pyunits.m**2, bounds=(0, None), doc="Membrane area" ) self._perf_var_dict["Membrane Area"] = self.membrane_area @self.Constraint(self.flowsheet().time, doc="Constraint for water flux.") def wat_flux(b, t): return b.properties_byproduct[t].flow_vol == ( pyunits.convert( b.water_flux * b.membrane_area, to_units=pyunits.m**3 / pyunits.s ) )
@property def default_costing_method(self): return self.cost_membrane_evaporator
[docs] @staticmethod def cost_membrane_evaporator(blk): """ General method for costing membrane evaporator unit. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology memb_cost = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["membrane_cost"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) expr = pyo.units.convert( blk.unit_model.membrane_area * memb_cost, to_units=blk.config.flowsheet_costing_block.base_currency, ) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows # TODO: Consider adding heat as a registered flow, since the inlet # stream to the membrane evaporator must be heated to ~37 C. blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )