Source code for watertap.unit_models.zero_order.ozone_aop_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a Ozone-AOP unit
operation.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.unit_models.zero_order.ozone_zo import OzoneZOData
from watertap.unit_models.zero_order.aop_addition_zo import AOPAdditionMixin

# Some more information about this module
__author__ = "Kurban Sitterley"


[docs]@declare_process_block_class("OzoneAOPZO") class OzoneAOPZOData(OzoneZOData, AOPAdditionMixin): """ Zero-Order model for a Ozone-AOP unit operation. """
[docs] def build(self): super().build() self._tech_type = "ozone_aop" self.oxidant_dose = Var( self.flowsheet().time, units=pyunits.mg / pyunits.L, doc="Oxidant dosage" ) self.chemical_flow_mass = Var( self.flowsheet().time, units=pyunits.kg / pyunits.s, bounds=(0, None), doc="Mass flow rate of oxidant solution", ) self.ozone_toc_ratio = Var( self.flowsheet().time, units=pyunits.dimensionless, doc="Ratio of ozone to total organic carbon", ) self.oxidant_ozone_ratio = Var( self.flowsheet().time, units=pyunits.dimensionless, doc="Ratio of oxidant to ozone", ) self._fixed_perf_vars.append(self.oxidant_ozone_ratio) @self.Constraint(self.flowsheet().time, doc="Ozone/TOC ratio constraint") def ozone_toc_ratio_constraint(b, t): return b.ozone_toc_ratio[t] == 1 + pyunits.convert( b.concentration_time[t] / b.contact_time[t] / b.properties_in[t].conc_mass_comp["toc"], to_units=pyunits.dimensionless, ) @self.Constraint(self.flowsheet().time, doc="Oxidant dose constraint") def oxidant_dose_constraint(b, t): return b.oxidant_dose[t] == pyunits.convert( b.oxidant_ozone_ratio[t] * b.ozone_toc_ratio[t] * b.properties_in[t].conc_mass_comp["toc"], to_units=pyunits.mg / pyunits.L, ) @self.Constraint(self.flowsheet().time, doc="Oxidant mass flow constraint") def chemical_flow_mass_constraint(b, t): return b.chemical_flow_mass[t] == pyunits.convert( b.oxidant_dose[t] * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.s, ) self._perf_var_dict["Oxidant Dosage (mg/L)"] = self.oxidant_dose self._perf_var_dict["Oxidant Flow (kg/s)"] = self.chemical_flow_mass self._perf_var_dict["Oxidant/Ozone Ratio"] = self.oxidant_ozone_ratio self._perf_var_dict["Ozone/TOC Ratio"] = self.ozone_toc_ratio
@property def default_costing_method(self): return self.cost_ozonation_aop
[docs] @staticmethod def cost_ozonation_aop(blk): """ General method for costing ozonation with AOP. Capital cost is based on the inlet flowrate, dosage of ozone and flow rate of H2O2. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B, C, D, E, F = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, [ "ozone_capital_a_parameter", "ozone_capital_b_parameter", "ozone_capital_c_parameter", "ozone_capital_d_parameter", "aop_capital_a_parameter", "aop_capital_b_parameter", ], ) # Add cost variable blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) # Get costing term for ozone addition expr = blk.unit_model._get_ozone_capital_cost(blk, A, B, C, D) # Add costing term for AOP addition expr += blk.unit_model._get_aop_capital_cost(blk, E, F) blk.capital_cost_constraint = pyo.Constraint(expr=blk.capital_cost == expr) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" ) blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.chemical_flow_mass[t0], "hydrogen_peroxide" )