Source code for watertap.unit_models.zero_order.ozone_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a Ozone reactor unit.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core.util.exceptions import ConfigurationError
from idaes.core import declare_process_block_class
from watertap.core import build_siso, ZeroOrderBaseData

# Some more information about this module
__author__ = "Kurban Sitterley"


[docs]@declare_process_block_class("OzoneZO") class OzoneZOData(ZeroOrderBaseData): """ Zero-Order model for a Ozone unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "ozonation" build_siso(self) if "toc" not in self.config.property_package.config.solute_list: raise ConfigurationError( "toc must be in solute list for Ozonation or Ozone/AOP" ) self.contact_time = Var( self.flowsheet().time, units=pyunits.minute, doc="Ozone contact time" ) self.concentration_time = Var( self.flowsheet().time, units=(pyunits.mg * pyunits.minute) / pyunits.liter, doc="CT value for ozone contactor", ) self.mass_transfer_efficiency = Var( self.flowsheet().time, units=pyunits.dimensionless, doc="Ozone mass transfer efficiency", ) self.specific_energy_coeff = Var( self.flowsheet().time, units=pyunits.kWh / pyunits.lb, bounds=(0, None), doc="Specific energy consumption for ozone generation", ) self._fixed_perf_vars.append(self.contact_time) self._fixed_perf_vars.append(self.concentration_time) self._fixed_perf_vars.append(self.mass_transfer_efficiency) self._fixed_perf_vars.append(self.specific_energy_coeff) self.ozone_flow_mass = Var( self.flowsheet().time, initialize=1, bounds=(0, None), units=pyunits.lb / pyunits.hr, doc="Mass flow rate of ozone", ) self.ozone_consumption = Var( self.flowsheet().time, initialize=1, bounds=(0, None), units=pyunits.mg / pyunits.liter, doc="Ozone consumption", ) self.electricity = Var( self.flowsheet().time, initialize=1, bounds=(0, None), units=pyunits.kW, doc="Ozone generation power demand", ) @self.Constraint(self.flowsheet().time, doc="Ozone consumption constraint") def ozone_consumption_constraint(b, t): return ( b.ozone_consumption[t] == ( ( pyunits.convert( b.properties_in[t].conc_mass_comp["toc"], to_units=pyunits.mg / pyunits.liter, ) + self.concentration_time[t] / self.contact_time[t] ) ) / self.mass_transfer_efficiency[t] ) @self.Constraint(self.flowsheet().time, doc="Ozone mass flow constraint") def ozone_flow_mass_constraint(b, t): return b.ozone_flow_mass[t] == pyunits.convert( b.properties_in[t].flow_vol * b.ozone_consumption[t], to_units=pyunits.lb / pyunits.hr, ) @self.Constraint(self.flowsheet().time, doc="Ozone power constraint") def electricity_constraint(b, t): return b.electricity[t] == ( b.specific_energy_coeff[t] * b.ozone_flow_mass[t] ) self._perf_var_dict["Ozone Contact Time (min)"] = self.contact_time self._perf_var_dict["Ozone CT Value ((mg*min)/L)"] = self.concentration_time self._perf_var_dict["Ozone Mass Transfer Efficiency"] = ( self.mass_transfer_efficiency ) self._perf_var_dict["Ozone Mass Flow (lb/hr)"] = self.ozone_flow_mass self._perf_var_dict["Ozone Unit Power Demand (kW)"] = self.electricity
@property def default_costing_method(self): return self.cost_ozonation
[docs] @staticmethod def cost_ozonation(blk): """ General method for costing ozone addition. Capital cost is based on the inlet flowrate and dosage of ozone. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B, C, D = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, [ "ozone_capital_a_parameter", "ozone_capital_b_parameter", "ozone_capital_c_parameter", "ozone_capital_d_parameter", ], ) # Get costing term for ozone addition expr = blk.unit_model._get_ozone_capital_cost(blk, A, B, C, D) # Add cost variable blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )
@staticmethod def _get_ozone_capital_cost(blk, A, B, C, D): """ Generate expressions for capital cost of ozonation system. """ t0 = blk.flowsheet().time.first() ln_Q = pyo.log( pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol / (pyo.units.m**3 / pyo.units.hour), to_units=pyo.units.dimensionless, ) ) dosage = pyo.units.convert( blk.unit_model.ozone_consumption[t0] / (pyo.units.mg / pyo.units.liter), to_units=pyo.units.dimensionless, ) expr = pyo.units.convert( A + B * dosage + C * ln_Q + D * dosage * ln_Q, to_units=blk.config.flowsheet_costing_block.base_currency, ) return expr