Source code for watertap.unit_models.zero_order.peracetic_acid_disinfection_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################

"""
This module contains a zero-order representation of a peracetic acid (PAA) water
disinfection unit.
"""

import pyomo.environ as pyo
from pyomo.environ import Var, units as pyunits
from idaes.core import declare_process_block_class
from watertap.core import build_sido_reactive, constant_intensity, ZeroOrderBaseData


# Some more information about this module
__author__ = "Travis Arnold"


[docs]@declare_process_block_class("PeraceticAcidDisinfectionZO") class PeraceticAcidDisinfectionData(ZeroOrderBaseData): """ Zero-Order model for a peracetic acid water disinfection unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "peracetic_acid_disinfection" build_sido_reactive(self) constant_intensity(self) # Create hydraulic retention time variable self.HRT = Var( units=pyunits.hr, bounds=(0, None), doc="Hydraulic retention time of water treatment unit", ) self._perf_var_dict["Hydraulic Retention Time"] = self.HRT self._fixed_perf_vars.append(self.HRT) # Create variable for mass of an E. coli cell self.ecoli_cell_mass = Var( units=pyunits.kg, bounds=(0, None), doc="Average mass of an E. coli cell", ) self._perf_var_dict["E. coli Average Cell Mass"] = self.ecoli_cell_mass self._fixed_perf_vars.append(self.ecoli_cell_mass) # Create variable for weight fraction of PAA in disinfection solution self.disinfection_solution_wt_frac_PAA = Var( units=pyunits.dimensionless, bounds=(0, 1), doc="Weight fraction of PAA in disinfection solution", ) self._perf_var_dict["Weight fraction PAA in disinfection solution"] = ( self.disinfection_solution_wt_frac_PAA ) self._fixed_perf_vars.append(self.disinfection_solution_wt_frac_PAA) # Create variable for disinfection solution density self.disinfection_solution_density = Var( units=pyunits.kg / pyunits.liter, bounds=(0, None), doc="Disinfection solution density", ) self._perf_var_dict["disinfection solution density"] = ( self.disinfection_solution_density ) self._fixed_perf_vars.append(self.disinfection_solution_density) # Create variable for disinfection solution volumetric flowrate self.disinfection_solution_flow_vol = Var( self.flowsheet().time, units=pyunits.L / pyunits.s, bounds=(0, None), doc="Volumetric flowrate of disinfection solution", ) self._perf_var_dict["Disinfection solution volumetric flowrate"] = ( self.disinfection_solution_flow_vol ) # Create constraint to calculate disinfection solution flowrate @self.Constraint( self.flowsheet().time, doc="Constraint for disinfection solution flowrate" ) def disinfection_solution_flow_vol_rule(b, t): return pyunits.convert( b.inlet.flow_mass_comp[t, "peracetic_acid"], to_units=pyunits.kg / pyunits.s, ) == pyunits.convert( b.disinfection_solution_flow_vol[t] * b.disinfection_solution_density * b.disinfection_solution_wt_frac_PAA, to_units=pyunits.kg / pyunits.s, ) # Create reactor volume variable self.reactor_volume = Var( units=pyunits.m**3, bounds=(0, None), doc="Volume of water treatment unit", ) self._perf_var_dict["Reactor Volume"] = self.reactor_volume # Create constraint relating HRT, volume, and volumetric flowrate @self.Constraint(self.flowsheet().time, doc="Constraint for reactor volume") def reactor_volume_rule(b, t): return b.reactor_volume == ( pyunits.convert( b.HRT * b.properties_in[t].flow_vol, to_units=pyunits.m**3 ) ) # Create variable for E. coli concentration at reactor inlet self.inlet_ecoli_conc = Var( self.flowsheet().time, units=pyunits.liter**-1, bounds=(0, None), doc="Concentration of E. coli at reactor inlet", ) self._perf_var_dict["Inlet E. coli Concentration"] = self.inlet_ecoli_conc # Create constraint relating E. coli inlet mass flow rate and # concentration @self.Constraint( self.flowsheet().time, doc="Constraint for E. coli inlet concentration" ) def ecoli_inlet_concentration_rule(b, t): return pyunits.convert( b.inlet.flow_mass_comp[t, "total_coliforms_fecal_ecoli"], to_units=pyunits.kg / pyunits.s, ) == pyunits.convert( b.inlet_ecoli_conc[t] * b.ecoli_cell_mass * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.s, ) # Create variable for E. coli concentration at reactor outlet self.outlet_ecoli_conc = Var( self.flowsheet().time, units=pyunits.liter**-1, bounds=(0, None), doc="Concentration of E. coli at reactor outlet", ) self._perf_var_dict["Outlet E. coli Concentration"] = self.outlet_ecoli_conc # Create constraint relating E. coli outlet mass flow rate and # concentration @self.Constraint( self.flowsheet().time, doc="Constraint for E. coli outlet concentration" ) def ecoli_outlet_concentration_rule(b, t): return pyunits.convert( b.treated.flow_mass_comp[t, "total_coliforms_fecal_ecoli"], to_units=pyunits.kg / pyunits.s, ) == pyunits.convert( b.outlet_ecoli_conc[t] * b.ecoli_cell_mass * b.properties_treated[t].flow_vol, to_units=pyunits.kg / pyunits.s, )
@property def default_costing_method(self): return self.cost_peracetic_acid
[docs] @staticmethod def cost_peracetic_acid(blk): """ General method for costing peracetic acid water disinfection. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype, ) # Get costing parameter sub-block for this technology sizing_cost = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["sizing_cost"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) expr = pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol * sizing_cost, to_units=blk.config.flowsheet_costing_block.base_currency, ) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" ) blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.disinfection_solution_flow_vol[t0], "disinfection_solution" )