Source code for watertap.unit_models.zero_order.sedimentation_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a sedimentation unit
operation.
"""

import pyomo.environ as pyo
from pyomo.environ import Constraint, units as pyunits, Var
from idaes.core import declare_process_block_class

from watertap.core import build_sido, constant_intensity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Adam Atia"


[docs]@declare_process_block_class("SedimentationZO") class SedimentationZOData(ZeroOrderBaseData): """ Zero-Order model for a Sedimentation unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "sedimentation" build_sido(self) constant_intensity(self) # TODO: Does it really make sense for this to be indexed by time? self.basin_surface_area = Var( self.flowsheet().config.time, units=pyunits.ft**2, doc="Surface area of sedimentation tank", ) self.settling_velocity = Var( self.flowsheet().config.time, units=pyunits.m / pyunits.s, doc="Particle settling velocity", ) self._fixed_perf_vars.append(self.settling_velocity) self._perf_var_dict["Basin Surface Area (ft^2)"] = self.basin_surface_area self._perf_var_dict["Settling Velocity (m/s)"] = self.settling_velocity def rule_basin_surface_area(b, t): return b.basin_surface_area[t] == pyunits.convert( b.properties_in[t].flow_vol / b.settling_velocity[t], to_units=pyunits.ft**2, ) self.basin_surface_area_constraint = Constraint( self.flowsheet().time, rule=rule_basin_surface_area ) if self.config.process_subtype == "phosphorus_capture": self.phosphorus_solids_ratio = Var( self.flowsheet().config.time, units=pyunits.dimensionless, doc="Mass fraction of phosphorus in settleable solids", ) self._fixed_perf_vars.append(self.phosphorus_solids_ratio) self._perf_var_dict["Phosphorus-Solids Ratio (kg/kg)"] = ( self.phosphorus_solids_ratio ) # This subtype is intended to be used explicitly for phosphorous capture. # If the user provides TSS, the amount of settled phosphate would be determined based on # an assumed fraction of phosphate in TSS. Alternatively, the user could provide phosphates # as the species, and the amount of solids + phosphate settled would be reported. # However, the user cannot provide both TSS and phosphates. if ( "phosphates" in self.config.property_package.solute_set and "tss" in self.config.property_package.solute_set ): raise KeyError( "tss and phosphates cannot both be defined in the solute_list. " "Please choose one." ) elif "phosphates" in self.config.property_package.solute_set: self.final_solids_mass = Var( self.flowsheet().config.time, units=pyunits.kg / pyunits.s, doc="Solids mass flow in byproduct stream", ) @self.Constraint( self.flowsheet().time, doc="Solids mass flow in byproduct stream constraint", ) def solids_mass_flow_constraint(b, t): return ( b.final_solids_mass[t] == b.properties_byproduct[t].flow_mass_comp["phosphates"] / b.phosphorus_solids_ratio[t] ) self._perf_var_dict["Final mass flow of settled solids (kg/s)"] = ( self.final_solids_mass ) elif "tss" in self.config.property_package.solute_set: self.final_phosphate_mass = Var( self.flowsheet().config.time, units=pyunits.kg / pyunits.s, doc="Phosphate mass flow in byproduct stream", ) @self.Constraint( self.flowsheet().time, doc="Phosphate mass flow in byproduct stream constraint", ) def phosphate_mass_flow_constraint(b, t): return ( b.final_phosphate_mass[t] == b.properties_byproduct[t].flow_mass_comp["tss"] * b.phosphorus_solids_ratio[t] ) self._perf_var_dict["Final mass flow of settled phosphate (kg/s)"] = ( self.final_phosphate_mass ) else: # Raise this error in case the user is intended to make use of the subtype but entered # the wrong component names. raise KeyError( "One of the following should be specified in the solute_list: " "tss or phosphates" )
@property def default_costing_method(self): return self.cost_sedimentation
[docs] @staticmethod def cost_sedimentation(blk, number_of_parallel_units=1): """ General method for costing sedimentaion processes. Capital cost is based on the surface area of the basin. Args: number_of_parallel_units (int, optional) - cost this unit as number_of_parallel_units parallel units (default: 1) """ t0 = blk.flowsheet().time.first() if blk.unit_model.config.process_subtype != "phosphorus_capture": sizing_term = blk.unit_model.basin_surface_area[t0] / pyo.units.foot**2 # Get parameter dict from database parameter_dict = ( blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype, ) ) A, B = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["capital_a_parameter", "capital_b_parameter"], ) # Determine if a costing factor is required factor = parameter_dict["capital_cost"]["cost_factor"] # Call general power law costing method blk.unit_model._general_power_law_form( blk, A, B, sizing_term, factor, number_of_parallel_units ) else: # Get parameter dict from database parameter_dict = ( blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype, ) ) # Get costing parameter sub-block for this technology unit_capex, unit_opex = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["unit_capex", "unit_opex"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) capex_expr = pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol * unit_capex, to_units=blk.config.flowsheet_costing_block.base_currency, ) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * capex_expr ) # Add fixed operating cost variable and constraint blk.fixed_operating_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency / blk.config.flowsheet_costing_block.base_period, bounds=(0, None), doc="Fixed operating cost of unit", ) blk.fixed_operating_cost_constraint = pyo.Constraint( expr=blk.fixed_operating_cost == pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol * unit_opex, to_units=blk.config.flowsheet_costing_block.base_currency / blk.config.flowsheet_costing_block.base_period, ) ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )