Source code for watertap.unit_models.zero_order.storage_tank_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a storage tank unit.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_pt, constant_intensity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Kurban Sitterley"


[docs]@declare_process_block_class("StorageTankZO") class StorageTankZOData(ZeroOrderBaseData): """ Zero-Order model for a storage tank unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() build_pt(self) constant_intensity(self) # self._has_recovery_removal = False self._tech_type = "storage_tank" self.storage_time = Var( self.flowsheet().time, units=pyunits.hours, doc="Storage time needed" ) self.surge_capacity = Var( self.flowsheet().time, units=pyunits.dimensionless, doc="Additional capacity needed for surge flow", ) self._fixed_perf_vars.append(self.storage_time) self._fixed_perf_vars.append(self.surge_capacity) self.tank_volume = Var( self.flowsheet().time, units=pyunits.m**3, doc="Storage tank volume" ) @self.Constraint(self.flowsheet().time, doc="Tank volume constraint") def tank_volume_constraint(b, t): return b.tank_volume[t] == pyunits.convert( b.properties[t].flow_vol, to_units=pyunits.m**3 / pyunits.hr ) * b.storage_time[t] * (1 + b.surge_capacity[t]) self._perf_var_dict["Storage Time (hr)"] = self.storage_time self._perf_var_dict["Surge Capacity (%)"] = self.surge_capacity self._perf_var_dict["Tank Volume (m3)"] = self.tank_volume
@property def default_costing_method(self): return self.cost_storage_tank
[docs] @staticmethod def cost_storage_tank(blk, number_of_parallel_units=1): """ General method for costing storage tanks. Capital cost is based on the volume of the tank. Args: number_of_parallel_units (int, optional) - cost this unit as number_of_parallel_units parallel units (default: 1) """ t0 = blk.flowsheet().time.first() sizing_term = blk.unit_model.tank_volume[t0] / pyo.units.m**3 # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["capital_a_parameter", "capital_b_parameter"], ) # Determine if a costing factor is required factor = parameter_dict["capital_cost"]["cost_factor"] # Call general power law costing method blk.unit_model._general_power_law_form( blk, A, B, sizing_term, factor, number_of_parallel_units ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )