Source code for watertap.unit_models.zero_order.supercritical_salt_precipitation_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a supercritical salt precipitation unit.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_sido, ZeroOrderBaseData

# Some more information about this module
__author__ = "Chenyu Wang"


[docs]@declare_process_block_class("SaltPrecipitationZO") class SaltPrecipitationZOData(ZeroOrderBaseData): """ Zero-Order model for a supercritical salt precipitation unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "supercritical_salt_precipitation" build_sido(self) self.flow_mass_in = Var( self.flowsheet().time, units=pyunits.t / pyunits.hour, bounds=(0, None), doc="Inlet mass flowrate", ) @self.Constraint( self.flowsheet().time, doc="Constraint for inlet mass flowrate.", ) def cons_flow_mass(b, t): return b.flow_mass_in[t] == pyunits.convert( sum( b.properties_in[t].flow_mass_comp[j] for j in b.properties_in[t].component_list ), to_units=pyunits.t / pyunits.hour, ) self._perf_var_dict["Inlet Mass Flowrate"] = self.flow_mass_in self.electricity = Var( self.flowsheet().time, units=pyunits.kW, bounds=(0, None), doc="Electricity consumption of unit", ) self._perf_var_dict["Electricity Demand"] = self.electricity self.energy_electric_flow_mass = Var( units=pyunits.kWh / pyunits.t, doc="Electricity intensity with respect to inlet flowrate", ) @self.Constraint( self.flowsheet().time, doc="Constraint for electricity consumption based on inlet flowrate.", ) def electricity_consumption(b, t): return b.electricity[t] == pyunits.convert( b.energy_electric_flow_mass * b.flow_mass_in[t], to_units=pyunits.kW ) self._fixed_perf_vars.append(self.energy_electric_flow_mass) self._perf_var_dict["Electricity Intensity"] = self.energy_electric_flow_mass
@property def default_costing_method(self): return self.cost_supercritical_salt_precipitation
[docs] @staticmethod def cost_supercritical_salt_precipitation(blk): """ General method for costing supercritical salt precipitation unit. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B, C, D = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, [ "installation_factor", "equipment_cost", "base_flowrate", "scaling_exponent", ], ) sizing_term = pyo.units.convert( (blk.unit_model.flow_mass_in[t0] / C), to_units=pyo.units.dimensionless, ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) expr = pyo.units.convert( A * B * sizing_term**D, to_units=blk.config.flowsheet_costing_block.base_currency, ) blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )