Source code for watertap.unit_models.zero_order.uv_aop_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a UV-AOP unit
operation.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.unit_models.zero_order.uv_zo import UVZOData
from watertap.unit_models.zero_order.aop_addition_zo import AOPAdditionMixin

# Some more information about this module
__author__ = "Adam Atia"


[docs]@declare_process_block_class("UVAOPZO") class UVAOPZOData(UVZOData, AOPAdditionMixin): """ Zero-Order model for a UV-AOP unit operation. """ CONFIG = UVZOData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "uv_aop" self.oxidant_dose = Var( self.flowsheet().time, units=pyunits.mg / pyunits.L, doc="Oxidant dosage" ) self.chemical_flow_mass = Var( self.flowsheet().time, units=pyunits.kg / pyunits.s, bounds=(0, None), doc="Mass flow rate of oxidant solution", ) self._fixed_perf_vars.append(self.oxidant_dose) @self.Constraint(self.flowsheet().time, doc="Chemical mass flow constraint") def chemical_flow_mass_constraint(b, t): return b.chemical_flow_mass[t] == pyunits.convert( b.oxidant_dose[t] * b.properties_in[t].flow_vol, to_units=pyunits.kg / pyunits.s, ) self._perf_var_dict["Oxidant Dosage (mg/L)"] = self.oxidant_dose self._perf_var_dict["Oxidant Flow (kg/s)"] = self.chemical_flow_mass
@property def default_costing_method(self): return self.cost_uv_aop @staticmethod def cost_uv_aop(blk): t0 = blk.flowsheet().time.first() # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B, C, D = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, [ "reactor_cost", "lamp_cost", "aop_capital_a_parameter", "aop_capital_b_parameter", ], ) expr = blk.unit_model._get_uv_capital_cost(blk, A, B) expr += blk.unit_model._get_aop_capital_cost(blk, C, D) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" ) # TODO: Check whether chemical flow cost was accounted for originally # and if should be in case study verification blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.chemical_flow_mass[t0], "hydrogen_peroxide" )