Source code for watertap.unit_models.zero_order.uv_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a UV reactor unit
operation.
"""

import pyomo.environ as pyo
from pyomo.environ import units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_siso, constant_intensity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Adam Atia"


[docs]@declare_process_block_class("UVZO") class UVZOData(ZeroOrderBaseData): """ Zero-Order model for a UV unit operation. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "uv" build_siso(self) constant_intensity(self) self.uv_reduced_equivalent_dose = Var( self.flowsheet().time, units=pyunits.mJ / pyunits.cm**2, doc="Reduced equivalent dosage", ) self.uv_transmittance_in = Var( self.flowsheet().time, units=pyunits.dimensionless, doc="UV transmittance of solution at UV reactor inlet", ) self.recovery_frac_mass_H2O.fix(1) self._fixed_perf_vars.append(self.uv_reduced_equivalent_dose) self._fixed_perf_vars.append(self.uv_transmittance_in) self._perf_var_dict["UV Reduced Equivalent Dosage (mJ/cm^2)"] = ( self.uv_reduced_equivalent_dose ) self._perf_var_dict["UV Transmittance of Feed"] = self.uv_transmittance_in
@property def default_costing_method(self): return self.cost_uv
[docs] @staticmethod def cost_uv(blk): """ General method for costing UV reactor units. Capital cost is based on the inlet flow, UV reduced equivalent dosage, and UV transmittance at the inlet. """ t0 = blk.flowsheet().time.first() # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology A, B = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, [ "reactor_cost", "lamp_cost", ], ) expr = blk.unit_model._get_uv_capital_cost(blk, A, B) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" )
@staticmethod def _get_uv_capital_cost(blk, A, B): """ Generate expression for capital cost of UV reactor. """ t0 = blk.flowsheet().time.first() Q = pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol, to_units=pyo.units.m**3 / pyo.units.hr, ) E = pyo.units.convert(blk.unit_model.electricity[t0], to_units=pyo.units.kW) expr = pyo.units.convert( A * Q + B * E, to_units=blk.config.flowsheet_costing_block.base_currency, ) return expr