Source code for watertap.unit_models.zero_order.vfa_recovery_zo

#################################################################################
# WaterTAP Copyright (c) 2020-2024, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory,
# National Renewable Energy Laboratory, and National Energy Technology
# Laboratory (subject to receipt of any required approvals from the U.S. Dept.
# of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/watertap-org/watertap/"
#################################################################################
"""
This module contains a zero-order representation of a general unit that recovers
volatile fatty acids (VFAs).
"""

import pyomo.environ as pyo
from pyomo.environ import Reference, units as pyunits, Var
from idaes.core import declare_process_block_class
from watertap.core import build_sido, pump_electricity, ZeroOrderBaseData

# Some more information about this module
__author__ = "Adam Atia"


[docs]@declare_process_block_class("VFARecoveryZO") class VFARecoveryZOData(ZeroOrderBaseData): """ Zero-Order model for a VFA recovery unit. """ CONFIG = ZeroOrderBaseData.CONFIG()
[docs] def build(self): super().build() self._tech_type = "vfa_recovery" if "nonbiodegradable_cod" not in self.config.property_package.solute_set: raise ValueError( "nonbiodegradable_cod must be included in the solute list since" " this unit model computes heat requirement based on it." ) build_sido(self) self._Q = Reference(self.properties_in[:].flow_vol) pump_electricity(self, self._Q) self.heat_required_per_vfa_mass = Var( self.flowsheet().time, units=pyunits.kJ / pyunits.kg, doc="Thermal energy required per mass VFA", ) self._fixed_perf_vars.append(self.heat_required_per_vfa_mass) self.heat_consumption = Var( self.flowsheet().time, units=pyunits.kJ / pyunits.s, doc="Thermal energy required", ) @self.Constraint( self.flowsheet().time, doc="Constraint for heat consumption", ) def eq_heat_consumption(b, t): return b.heat_consumption[t] == pyunits.convert( b.properties_in[t].flow_mass_comp["nonbiodegradable_cod"] * b.heat_required_per_vfa_mass[t], to_units=pyunits.kJ / pyunits.s, ) self._perf_var_dict["Heat consumption"] = self.heat_consumption
@property def default_costing_method(self): return self.cost_vfa_recovery
[docs] @staticmethod def cost_vfa_recovery(blk): """ Method for costing VFA recovery unit. """ t0 = blk.flowsheet().time.first() # Get parameter dict from database parameter_dict = blk.unit_model.config.database.get_unit_operation_parameters( blk.unit_model._tech_type, subtype=blk.unit_model.config.process_subtype ) # Get costing parameter sub-block for this technology unit_capex = blk.unit_model._get_tech_parameters( blk, parameter_dict, blk.unit_model.config.process_subtype, ["unit_capex"], ) # Add cost variable and constraint blk.capital_cost = pyo.Var( initialize=1, units=blk.config.flowsheet_costing_block.base_currency, bounds=(0, None), doc="Capital cost of unit operation", ) capex_expr = pyo.units.convert( blk.unit_model.properties_in[t0].flow_vol * unit_capex, to_units=blk.config.flowsheet_costing_block.base_currency, ) # Determine if a costing factor is required blk.costing_package.add_cost_factor( blk, parameter_dict["capital_cost"]["cost_factor"] ) blk.capital_cost_constraint = pyo.Constraint( expr=blk.capital_cost == blk.cost_factor * capex_expr ) # Register flows blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.electricity[t0], "electricity" ) blk.config.flowsheet_costing_block.cost_flow( blk.unit_model.heat_consumption[t0], "heat" )