Source code for watertap.unit_models.MD.MD_channel_1D

from pyomo.environ import (
    NegativeReals,
    Set,
    Var,
)
from idaes.core import (
    declare_process_block_class,
    FlowDirection,
)
from idaes.core.util import scaling as iscale
from idaes.core.util.exceptions import ConfigurationError
from idaes.core.util.misc import add_object_reference
from idaes.core.base.control_volume1d import ControlVolume1DBlockData
import idaes.logger as idaeslog
from .MD_channel_base import (
    MDChannelMixin,
    PressureChangeType,
)

__author__ = "Elmira Shamlou"


[docs]@declare_process_block_class("MDChannel1DBlock") class MDChannel1DBlockData(MDChannelMixin, ControlVolume1DBlockData): def _skip_element(self, x): if self.config.transformation_scheme != "FORWARD": return x == self.length_domain.first() else: return x == self.length_domain.last()
[docs] def apply_transformation(self, *args, **kwargs): super().apply_transformation(*args, **kwargs) self.difference_elements = Set( ordered=True, initialize=(x for x in self.length_domain if not self._skip_element(x)), ) self._set_nfe()
[docs] def add_geometry( self, length_var, width_var, flow_direction=FlowDirection.forward, **kwargs ): """ Method to create spatial domain and volume Var in ControlVolume. Args: length_var - An external variable to use for the length of the channel. If a variable is provided, a reference will be made to this in place of the length Var. width_var - An external variable to use for the width of the channel. If a variable is provided, a reference will be made to this in place of the length Var. flow_direction - argument indicating direction of material flow relative to length domain. Valid values: - FlowDirection.forward (default), flow goes from 0 to 1. - FlowDirection.backward, flow goes from 1 to 0 length_domain - (optional) a ContinuousSet to use as the length domain for the ControlVolume. If not provided, a new ContinuousSet will be created (default=None). ContinuousSet should be normalized to run between 0 and 1. length_domain_set - (optional) list of point to use to initialize a new ContinuousSet if length_domain is not provided (default = [0.0, 1.0]). Returns: None """ super().add_geometry( length_var=length_var, flow_direction=flow_direction, **kwargs ) add_object_reference(self, "width", width_var)
[docs] def add_state_blocks( self, has_phase_equilibrium=None, property_package_vapor=None, property_package_args_vapor=None, ): """ This method constructs the state blocks for the control volume. Args: has_phase_equilibrium: indicates whether equilibrium calculations will be required in state blocks Returns: None """ super().add_state_blocks(has_phase_equilibrium=has_phase_equilibrium) self._add_interface_stateblock(has_phase_equilibrium) self._add_vapor_stateblock( property_package_vapor, property_package_args_vapor, has_phase_equilibrium=False, )
def _add_pressure_change(self, pressure_change_type=PressureChangeType.calculated): add_object_reference(self, "dP_dx", self.deltaP) units_meta = self.config.property_package.get_metadata().get_derived_units self.deltaP_channel = Var( self.flowsheet().config.time, initialize=-1e5, bounds=(-1e6, 0), domain=NegativeReals, units=units_meta("pressure"), doc="total prossure drop across the channel", ) def _add_deltaP(self, pressure_change_type=PressureChangeType.calculated): if pressure_change_type == PressureChangeType.fixed_per_stage: @self.Constraint( self.flowsheet().config.time, self.length_domain, doc="pressure change due to friction", ) def eq_pressure_change(b, t, x): return b.deltaP_channel[t] == b.dP_dx[t, x] * b.length else: @self.Constraint( self.flowsheet().config.time, doc="Total Pressure drop across channel" ) def eq_pressure_change(b, t): return b.deltaP_channel[t] == sum( b.dP_dx[t, x] * b.length / b.nfe for x in b.difference_elements )
[docs] def initialize( self, state_args=None, outlvl=idaeslog.NOTSET, optarg=None, solver=None, hold_state=True, initialize_guess=None, type=None, ): """ Initialization routine for the membrane channel control volume Keyword Arguments: state_args : a dict of arguments to be passed to the property package(s) to provide an initial state for initialization (see documentation of the specific property package) (default = {}). outlvl : sets output log level of initialization routine optarg : solver options dictionary object (default=None, use default solver options) solver : str indicating which solver to use during initialization (default = None) hold_state : flag indicating whether the initialization routine should unfix any state variables fixed during initialization, **default** - True. **Valid values:** **True** - states variables are not unfixed, and a dict of returned containing flags for which states were fixed during initialization, **False** - state variables are unfixed after initialization by calling the release_state method. initialize_guess : a dict of guesses Returns: If hold_states is True, returns a dict containing flags for which states were fixed during initialization. """ # Get inlet state if not provided init_log = idaeslog.getInitLogger(self.name, outlvl, tag="control_volume") solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="control_volume") state_args = self._get_state_args(initialize_guess, state_args) state_args_properties_in = state_args["inlet"] source_flags = super().initialize( state_args=state_args_properties_in, outlvl=outlvl, optarg=optarg, solver=solver, hold_state=True, ) # Differentiate between hot and cold channels for properties_out if type == "hot_ch": state_args_properties_out = state_args["hot_outlet"] elif type == "cold_ch": state_args_properties_out = state_args["cold_outlet"] else: raise ConfigurationError( "Either hot_ch or cold_ch must be set in the configuration." ) state_args_interface = self._get_state_args_interface( state_args_properties_in, state_args_properties_out ) self.properties_interface.initialize( outlvl=outlvl, optarg=optarg, solver=solver, state_args=state_args_interface, ) state_args_vapor = self._get_state_args_vapor( state_args_properties_in, state_args_properties_out ) self.properties_vapor.initialize( outlvl=outlvl, optarg=optarg, solver=solver, state_args=state_args_vapor, ) init_log.info("Initialization Complete") if hold_state: return source_flags else: self.release_state(source_flags, outlvl)
def calculate_scaling_factors(self): super().calculate_scaling_factors() if hasattr(self, "area"): if iscale.get_scaling_factor(self.area) is None: iscale.set_scaling_factor(self.area, 100) if hasattr(self, "deltaP_channel"): for v in self.deltaP_channel.values(): if iscale.get_scaling_factor(v) is None: iscale.set_scaling_factor(v, 1e-4) if hasattr(self, "dP_dx"): for v in self.pressure_dx.values(): iscale.set_scaling_factor(v, 1e-5)